

2018 Annual Groundwater Monitoring and Corrective Action Report

Sandow Steam Electric Station AX Landfill - Rockdale, Texas

Prepared for:

Luminant Generation Company LLC

TABLE OF CONTENTS

LIST	OF FIGURES	. II
LIST	<u>OF TABLES</u>	. II
LIST	OF ATTACHMENTS	. II
ACRO	ONYMS AND ABBREVIATIONS	Ш
1.0	INTRODUCTION	.1
2.0	MONITORING AND CORRECTIVE ACTION PROGRAM STATUS	. 2
	KEY ACTIONS COMPLETED IN 2018	
	PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS	
	KEY ACTIVITIES PLANNED FOR 2019	
6.0	REFERENCES	6
0.0	1/2: 2:/2:/424	. •

LIST OF FIGURES

Figure 1 Detailed Site Plan

LIST OF TABLES

Table 1 Statistical Background Values

Table 2 Appendix III Analytical Results

LIST OF ATTACHMENTS

Attachment 1 Alternate Source Demonstration Report

ii

ACRONYMS AND ABBREVIATIONS

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

GWPS Groundwater Protection Standard

MCL Maximum Concentration Level

mg/L Milligrams per Liter

NA Not Applicable

SSI Statistically Significant Increase

SSL Statistically Significant Levels

USEPA United States Environmental Protection Agency

1.0 INTRODUCTION

Golder Associates, Inc. (Golder) has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule for the AX Landfill at the former Sandow Steam Electric Station, Texas. The CCR units and CCR monitoring well network are shown on Figure 1.

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per 40 CFR 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The AX Landfill CCR unit is currently in the Detection Monitoring Program. The initial Detection Monitoring Program groundwater samples were collected from the AX Landfill CCR monitoring well network in October 2017. In accordance with procedures described in the Statistical Analysis Plan (PBW, 2017), verification re-samples were collected from several wells on March 16, 2018 to verify the October 2017 sample results. The evaluation of the data was completed in 2018 using procedures described in the Statistical Analysis Plan (PBW, 2017) to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary

Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established
10/02/2017-10/03/2017 03/16/2018	Appendix III	Yes	No (Alternate Source Demonstration Completed)
03/21/2018-03/26/2018	Appendix III	Not Applicable	Not Applicable
10/08/2018-10/09/2018	Appendix III	To Be Determined	To Be Determined

The statistical background values and Appendix III analytical data are presented in Tables 1 and 2, respectively. SSIs of Appendix III parameters were identified for the October 2017 sampling event and March 2018 verification re-sample event. An alternate source demonstration was completed in 2018, which indicated that a source other than the CCR unit caused the SSIs. As such, the AX Landfill remained in the Detection Monitoring Program in 2018. A summary of the alternate source demonstration is presented in Attachment 1.

Subsequent Detection Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network on a semi-annual basis in 2018, as required by the CCR Rule. The first 2018 semi-annual Detection Monitoring Program sampling event was conducted in March 2018. The second 2018 semi-annual Detection Monitoring Program sampling event was conducted in October 2018. The analytical data from the 2018 semi-annual Detection Monitoring Program sampling events were evaluated using procedures described in the Statistical Analysis Plan to identify SSIs of Appendix III parameters over background concentrations. Since the Detection Monitoring Program data evaluation was completed in January 2019, the results of that evaluation will be presented in the 2019 Annual Groundwater Monitoring and Corrective Action Report.

3.0 KEY ACTIONS COMPLETED IN 2018

Semi-annual Detection Monitoring Program groundwater monitoring events were completed in March and October 2018. Statistical background values for the Appendix III parameters are summarized in Table 1 and the analytical results for the groundwater samples collected in 2018 are summarized in Table 2. A map showing the AX Landfill and CCR monitoring wells is provided as Figure 1.

No CCR wells were installed or decommissioned in 2018.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2018.

5.0 KEY ACTIVITIES PLANNED FOR 2019

The following key activities are planned for 2019:

- Continue the Detection Monitoring Program in accordance with 40 CFR § 257.94.
- Complete evaluation of Appendix III analytical data and compare results to statistical background values to determine whether an SSI has occurred.
- If an SSI is identified, potential alternate sources (i.e., a source other than the CCR unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated. If an alternate source is identified to be the cause of the SSI, a written demonstration will be completed within 90 days of SSI determination and included in the 2019 Annual Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSI, an Assessment Monitoring Program will be established in accordance with 40 CFR § 257.94(e)(2).


6.0 REFERENCES

Pastor, Behling & Wheeler, LLC, 2017. Coal Combustion Residual Rule Statistical Analysis Plan, Sandow Steam Electric Station, AX Landfill, Rockdale, Texas.

FIGURES

PHOTOGRAPH LOCATION

Scale in Feet

2500

CCR Monitoring Well Location

SANDOW STEAM ELECTRIC STATION AX LANDFILL

Figure 1

SITE PLAN

PROJECT: 5164E BY: AJD REVISIONS

DATE: SEPT., 2017 CHECKED: PJB

SOURCE: Imagery from www.tnris.gov, Alcoa Lake, aerial photographs, 2012.



Table 1
Statistical Background Values
Sandow Steam Electric Station AX Landfill

Sample Location	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Field pH (s.u.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
Upgradient V							
AXMW-1	0.681	569	491	0.4	5.49 7.09	2,660	5,820
AXMW-2	3.62	943	391	1.88	4.6 7.63	3,040	4,940
AX-23	1.1	475	313	0.4	3.24 7.95	1,030	3,090
AX-29	0.432	791	306	0.4	2.73 7.01	1,440	3,370
Downgradier	nt Wells						
AX-24	0.311	273	580	0.4	3.89 9.38	1,010	2,520
AX-25	0.298	262	1,140	0.507	4.69 9.2	795	3,980
AX-26	0.446	915	3,040	0.4	5.07 8.14	1,200	8,300
AX-27	0.281	366	1,020	0.4	6.08 7.3	478	3,620
AX-28	0.393	633	756	0.4	4.67 8.55	2,280	3,790

Table 2
Appendix III Analytical Results
Sandow Steam Electric Station AX Landfill

Sample	Date	Boron	Calcium	Chloride	Fluoride	Field pH	Sulfate	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Upgradient \			<u> </u>		T			
	10/3/17	0.463	477	348	<0.1	5.75	1,990	3,620
AXMW-1	3/21/18	0.497	425	267	0.122 J	5.89	2,050	3,680
	10/9/18	0.512	473	229	0.371	6.31	2,260	3,730
	10/3/17	2.140	644	207	<0.1	5.93	1,990	3,640
AXMW-2	3/21/18	2.640	628	218	1.18	5.80	2,280	4,050
	10/9/18	1.470	562	179	0.84	6.66	1,960	3,280
	10/3/17	0.314	316	184	<0.1	6.43	631	1,620
AX-23	3/23/18	0.312	309	193	0.768	6.09	655	1,730
	10/9/18	0.381	305	210	0.449	7.00	636	1,700
	10/3/17	0.316	392	276	<0.1	6.2	1,110	2,480
AX-29	3/23/18	0.301	356	285	0.806	5.89	1,160	2,450
	10/9/18	0.361	339	274	0.446	6.99	1,060	2,390
Downgradie	nt Wells		1					
	10/2/17	0.129	252	307	<0.1	6.12	632	1,810
AX-24	3/26/18	0.134	254	309	0.279 J	5.82	762	1,880
	10/8/18	0.178	260	283	0.593	6.82	759	1,840
	10/3/17	0.205	325	586	<0.1	6.37	504	2,400
AX-25	3/16/18	NA	302	NA	NA	NA	NA	NA
	3/26/18	0.199	281	583	0.748	6.38	526	2,420
	10/8/18	0.231	324	586	1.01	7.09	492	2,360
	10/2/17	0.352	666	1,100	<0.1	6.38	945	3,740
AX-26	3/26/18	0.342	912	1,820	<0.1	6.41	1,300	4,980
	10/8/18	0.403	905	1,720	<0.1	7.09	1,220	4,680
	10/2/17	0.206	462	652	<0.1	6.19	569	2,490
	3/16/18	NA	453	NA	NA	NA	659	NA
AX-27	3/16/2018 dup	NA	456	NA	NA	NA	648	NA
	3/26/18	0.209	438	584	<0.1	6.29	661	2,350
	10/8/18	0.247	422	540	0.144	7.17	554	2,220
	10/2/17	0.207	664	384	<0.1	6.25	1,670	3,350
	3/16/18	NA	634	NA	NA	NA	NA	NA
AX-28	3/23/18	0.204	621	354	<0.1	6.17	1,720	3,430
	10/8/18	0.305	578	230	0.465	0.07	1,710	3,300
	10/8/18 dup	0.316	577	233	0.505	6.87	1,780	3,370

Notes:

NA - not analyzed.

J - concentration detected below minimum quantitation limit; result is an estimate.

ATTACHMENT 1 ALTERNATE SOURCE DEMONSTRATION REPORT

COAL COMBUSTION RESIDUAL RULE ALTERNATE SOURCE DEMONSTRATION REPORT

SANDOW 5 GENERATING PLANT AX LANDFILL ROCKDALE, TEXAS

APRIL 15, 2018

Prepared For:

Luminant Generation Company, LLC 6555 Sierra Drive Irving, TX 75039

Prepared By:

Pastor, Behling & Wheeler, LLC 2201 Double Creek Drive, Suite 4004 Round Rock, Texas 78664 Texas Engineering Firm No. 4760

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Pastor, Behling & Wheeler, LLC under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the requirements of Section 257.94(e)(2) of the CCR Rule.

Patrick J. Behling, P.E.

Principal Engineer

PASTOR, BEHLING & WHEELER, LLC

TABLE OF CONTENTS

PRC	DFESSIONAL CERTIFICATION	ii
TAE	BLE OF CONTENTS	iii
LIST	Γ OF TABLES	iv
LIST	Γ OF FIGURES	iv
LIST	Γ OF APPENDICES	iv
1.0	INTRODUCTION	1
	1.1 CCR Unit Groundwater Monitoring Applicability	
2.0	GROUNDWATER MONITORING SYSTEM	
	Description of AX Landfill	
3.0	GROUNDWATER MONITORING PROGRAM	3
	3.1 Background Monitoring Program 3.2 Detection Monitoring Program 3.2.1 AX Landfill Detection Monitoring Results 3.2.2 AX Landfill Calcium Re-Sample Results 3.2.3 AX Landfill Sulfate Re-Sample Results	4
4.0	CONCLUSION	6
5.0	REFERENCES	7

LIST OF TABLES

Table No.	<u>Title</u>
1	CCR Well Construction Summary
2	CCR Groundwater Detection Monitoring Data Summary
	LIST OF FIGURES
Figure No.	<u>Title</u>
1	Site Location Map
2	Site Plan
3	Groundwater Potentiometric Surface Map October 2-3, 2017
	LIST OF APPENDICES
Appendix	<u>Title</u>
A	Detection Monitoring Laboratory Analytical Reports

1.0 INTRODUCTION

Luminant Generation Company, LLC (Luminant) formerly operated the Sandow 5 Generating Plant (Sandow) located approximately 7 miles southwest of Rockdale in Milam County, Texas Figure 1. The Sandow AX Landfill, located approximately 7,500 feet south of Unit No. 5 on former mined land that is part of the Sandow Lignite Mine (Figure 1), has been identified as a coal combustion residuals (CCR) unit that is subject to the requirements of the CCR Rule.

The purpose of this report is to document that a source other than AX Landfill (hereafter, the "Site") caused the statistically significant increase (SSI) over background levels for the Appendix III samples collected during the initial detection monitoring event in 2017 as required in 40 CFR 257.94(e)(2).

1.1 CCR Unit Groundwater Monitoring Applicability

Pastor, Behling & Wheeler, LLC (PBW) was retained by Luminant to evaluate the CCR groundwater monitoring system and develop and implement a CCR groundwater sampling and analysis program at the Site. To document these activities, PBW prepared the following reports, which were placed in the facility's operating record to comply with Section 257.105(h) of the CCR Rule:

- CCR Groundwater Monitoring System Certification (PBW, 2017a);
- CCR Monitoring Well Design, Installation, Development, and Decommissioning Report (PBW, 2017b):
- CCR Statistical Analysis Plan (PBW, 2017c); and
- 2017 Annual Groundwater Monitoring Report (PBW, 2018).

The initial detection monitoring event required under Section 257.94 of the CCR Rule was performed at the AX Landfill in October 2017. Potential SSIs over background levels for two Appendix III constituents (calcium and sulfate) were observed during evaluation of the detection monitoring event data. This Alternate Source Demonstration Report was prepared to demonstrate that a source other than the AX Landfill caused the SSIs for these constituents.

2.0 GROUNDWATER MONITORING SYSTEM

2.1 Description of AX Landfill

The AX Landfill consists of Cells 1 and 2 and covers an area of approximately 70 acres (Figure 2). Cell 2A of the AX Landfill was constructed adjacent to Cells 1 and 2, but was never used. Construction of Cell 1 was completed in July 2013 and construction of Cell 2 was completed in October 2015. Placement of Unit No. 5 CCR began in Cell 1 in May 2015 and Cell 2 in September 2016. CCR has never been placed in Cell 2A.

2.2 AX Landfill Groundwater Monitoring System

The CCR groundwater monitoring well system at the AX Landfill consists of nine monitoring wells (AXMW-1, AXMW-2, AX-23, AX-24, AX-25, AX-26, AX-27, AX-28, and AX-29) that are screened in the uppermost aquifer at the Site. The locations of the CCR monitoring wells are shown on Figure 2. Well construction information and survey data for the CCR wells are summarized in Table 1.

The AX Landfill is constructed within highly heterogeneous overburden spoil material that was previously excavated and backfilled during lignite mining operations at the Sandow Lignite Mine. The uppermost aquifer at the Site occurs under unconfined conditions within the overburden spoil and extends to the base of the spoil where lignite and/or clay confining units are encountered. A groundwater potentiometric surface map based on the groundwater elevations measured during the 2017 detection monitoring event is presented on Figure 3. Groundwater elevations were generally highest on the west side of the landfill, with an inferred groundwater flow direction to the east at an approximate hydraulic gradient of 0.015 feet/feet. An average linear flow velocity of 0.15 feet/day was calculated for the AX Landfill based on the approximate hydraulic gradient of 0.015 feet/feet, an aquifer hydraulic conductivity of 8.77 x 10⁻⁴ cm/sec (PBW, 2017a), and an assumed effective porosity of 0.25 for the highly heterogeneous overburden material.

3.0 GROUNDWATER MONITORING PROGRAM

3.1 Background Monitoring Program

Statistical analysis of groundwater monitoring data is required under Section 257.93 of the CCR Rule. Section 257.93 of the CCR Rule provides several options for statistically evaluating the groundwater data. In accordance with paragraph (f)(1) through (5) of Section 257.93, the following statistical evaluation approach was selected to demonstrate groundwater compliance for the Site under the CCR Rule (PBW, 2017c):

- Use of intrawell data evaluations, which compare new sample data to historical data at each groundwater monitoring well independently; and
- Use of prediction limits for data comparisons. This approach is a common statistical method used to evaluate groundwater compliance for Subtitle D landfill facilities and is one of the approved options for groundwater quality data statistical evaluation under the CCR Rule.

Eight background groundwater monitoring events were performed at the AX Landfill using the CCR monitoring well system from October 2015 to December 2016. Groundwater samples collected during the background monitoring events were evaluated for each Appendix III and Appendix IV parameter at each well to establish prediction limits in accordance with procedures outlined in the CCR Statistical Analysis Plan (PBW, 2017c). Development of the prediction limits and documentation on the collection and analysis of the background sample data were detailed in the 2017 Annual Groundwater Monitoring Report (PBW, 2018).

3.2 Detection Monitoring Program

Section 257.94 of the CCR Rule requires that detection monitoring of groundwater be performed at all CCR units. The following constituents are evaluated as part of the detection monitoring program (from Appendix III to the CCR Rule):

- Boron
- Calcium
- Chloride
- Fluoride
- pH
- Sulfate
- Total Dissolved Solids (TDS)

If an SSI over background is determined for one or more of the constituents listed above at any monitoring well at the CCR unit waste boundary, within 90 days the owner or operator must:

- Establish an assessment monitoring program as described in Section 257.95 of the Rule; or
- Demonstrate that a source other than the CCR unit caused the SSI over background levels for a constituent or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. If a successful demonstration is completed within the 90-day period, the owner or operator of the CCR unit may continue with the detection monitoring program.

3.2.1 AX Landfill Detection Monitoring Results

PBW collected the initial detection monitoring groundwater samples from the AX Landfill CCR monitoring wells in October 2017. The detection monitoring data are presented, along with the applicable prediction limits, in Table 2. Laboratory analytical reports for the detection monitoring data are included in Appendix A.

All detection monitoring constituent concentrations in all AX Landfill monitoring wells from the October 2017 monitoring event were below applicable prediction limits, with the exception of calcium in wells AX-25, AX-27, and AX-28 and sulfate in well AX-27. In accordance with the Statistical Analysis Plan (PBW, 2017c), re-samples were collected from each of these wells in March 2018. The re-samples were analyzed for the constituents that exceeded prediction limits during the initial detection monitoring event.

3.2.2 AX Landfill Calcium Re-Sample Results

Calcium concentrations in the March 2018 AX-25, AX-27, and AX-28 re-samples were similar to those observed in the October 2017 detection monitoring event samples from these wells (Table 2). Calcium results exceeded the applicable prediction limits in each of these wells in both the initial detection samples and re-samples; however, calcium concentrations were similar or higher in downgradient well AX-26 and upgradient well AXMW-2 compared to the calcium concentrations that exceeded prediction limits in AX-25, AX-27, and AX-28. Based on the high variability in calcium concentrations in wells upgradient and downgradient of the AX Landfill, the calcium prediction limit exceedances observed in AX-25, AX-27, and AX-28 are attributed to natural variation in groundwater quality related to heterogeneity of the mine spoil rather than a suspected release from the AX Landfill.

This conclusion is further supported by the location of the subject wells relative to Cells 1 and 2. Based on the timing of ash placement in the AX Landfill and the average linear groundwater velocity described in Section 2 (0.15 feet/day), AX-25, AX-27, and AX-28 are all located sufficiently far from Cells 1 and 2 that affected water theoretically released from the cells would not have reached any of the wells at the time that the initial detection monitoring samples were collected. Cell 2 is the closest active cell to AX-25, AX-27, and AX-28. Ash was first placed in Cell 2 in September 2016. Using the conservative assumptions that the wells are all located directly downgradient of Cell 2 and that chemical adsorption is negligible, the amount of time it would take groundwater below Cell 2 to reach AX-27 (approximately 70 feet from Cell 2) is 1.3 years, AX-28 (approximately 260 feet from Cell 2) is 4.7 years, and AX-25 (approximately 2,400 feet from Cell 2) is 44 years. Cell 1 is located an even greater distance from wells AX-25, AX-27, and AX-28, so the groundwater travel time from Cell 1 to these wells would be significantly greater.

3.2.3 AX Landfill Sulfate Re-Sample Results

The sulfate concentration in the March 2018 AX-27 re-sample was similar to the concentrations observed in the initial October 2017 detection monitoring sample from this well (Table 2). Sulfate results exceeded the applicable sulfate prediction limit for the well in both the initial detection sample and re-sample; however, the sulfate sample concentrations from AX-27 were some of the lowest observed Site-wide. Two CCR wells located upgradient from the unit (AXMW-1 and AXMW-2) had significantly higher sulfate sample concentrations (both were 1,990 mg/L), and the remaining Site CCR wells had similar or higher sulfate concentrations compared to AX-27. Additionally, as described in the previous section, affected water theoretically released from Cells 1 and 2 would not have reached AX-27 when the initial detection monitoring samples were collected. Based on the high variability in sulfate concentrations in wells upgradient and downgradient of the AX Landfill and the location of AX-27 relative to Cells 1 and 2, the sulfate prediction limit exceedances observed in AX-27 is attributed to natural variation in groundwater quality related to the heterogeneity of the mine spoil rather than a suspected release from the AX Landfill.

4.0 CONCLUSION

Calcium and sulfate concentrations exceeded applicable prediction limits in one or more wells during the initial October 2017 detection monitoring event and subsequent March 2018 re-sample event at the AX Landfill. Because other CCR Site wells exhibited similar or higher concentrations of calcium and sulfate, and because theoretically affected water from the active landfill cells could not have reached the wells where prediction limit exceedances were observed based on the average linear groundwater flow velocities for the unit, all of the observed prediction limit exceedances are attributed to natural variation in groundwater quality due to the heterogeneity of the spoil groundwater system and are not considered evidence of a release from the unit. In accordance with Section 257.94(e)(2), Luminant will continue the detection monitoring program at the unit. Initiation of an assessment monitoring program is not required at this time.

5.0 REFERENCES

- Pastor, Behling & Wheeler, LLC (PBW), 2017a. Coal Combustion Residual Rule Groundwater Monitoring System Certification, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. October 16, 2017.
- Pastor, Behling & Wheeler, LLC (PBW), 2017b. Coal Combustion Residual Rule Monitoring Well Design, Installation, Development, and Decommissioning Report, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. October 13, 2017.
- Pastor, Behling & Wheeler, LLC (PBW), 2017c. Coal Combustion Residual Rule Statistical Analysis Plan, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. October 11, 2017.
- Pastor, Behling & Wheeler, LLC (PBW), 2018. Coal Combustion Residual Rule 2017 Annual Groundwater Monitoring Report, Sandow 5 Generating Plant, AX Landfill, Rockdale, Texas. January 31, 2018.

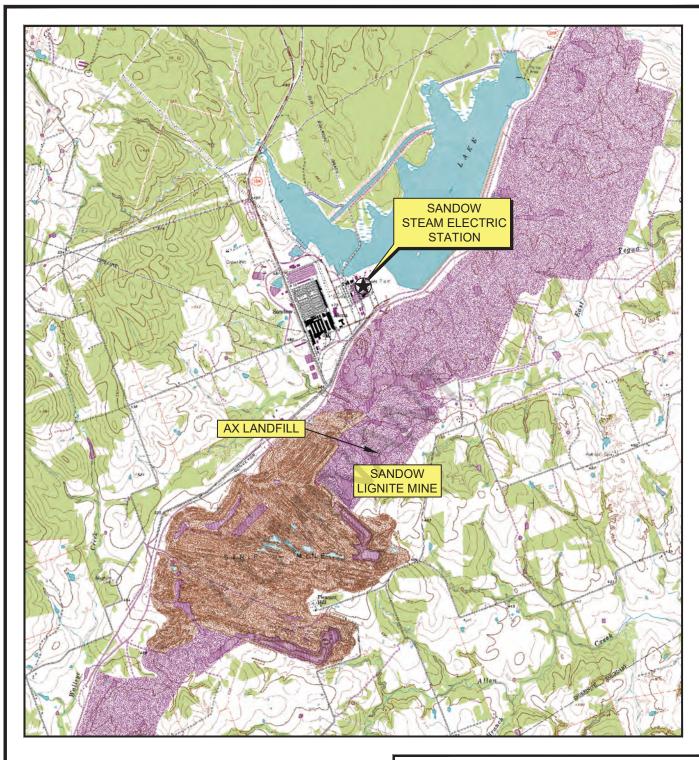
Tables

TABLE 1 CCR WELL CONSTRUCTION SUMMARY SANDOW AX LANDFILL

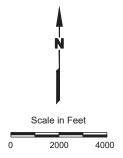
Well ID	Date Installed	Northing	Easting	Ground Elevation (ft amsl)	TOC Elevation (ft amsl)	Top of Screen (ft bgs)	Bottom of (ft bgs)	Screen Length (ft)	Total Design Depth (ft bgs)	Casing Diameter (inches)
AX-23	10/15/15	335065	3028456	479.78	482.26	65	85	20	85	4
AX-24	10/15/15	336503	3031537	466.48	468.74	61	81	20	81	2
AX-25	10/16/15	335806	3032212	441.11	443.62	65	75	10	75	2
AX-26	10/14/15	334521	3031007	456.34	458.60	55	75	20	75	2
AX-27	10/14/15	333747	3030177	476.82	479.47	78	98	20	98	4
AX-28	10/13/15	332787	3029656	460.75	463.26	25	45	20	45	2
AX-29	10/13/15	333162	3028622	484.96	487.73	45	65	20	65	2
AXMW-1	11/28/12	336064	3029088	471.88	473.65	33	53	20	53	2
AXMW-2	11/28/12	334057	3028201	480.54	482.25	43	63	20	63	2

Notes:

^{1.} Abbreviations: ft - feet; amsl - above mean sea level; bgs - below ground surface; TOC - top of casing.


TABLE 2
CCR GROUNDWATER DETECTION MONITORING DATA SUMMARY
SANDOW AX LANDFILL

Sample	Date	В		Ca		CI		FI		Field	рН	so	4	TD	S
Location	Sampled	Prediction Limit	Sample Data	Prediction Limit	Sample Data	Prediction Limit	Sample	Prediction Limit	Sample Data	Prediction Limit	Sample Data	Prediction Limit	Sample Data	Prediction Limit	Sample Data
		Limit	Data	Limit	Data	Limit	Data	Limit	Data	3.24	Data		Data		
AX-23	10/3/17	1.1	0.314	475	316	313	184	0.4	<0.1	7.95	6.43	1,030	631	3,090	1,620
AX-24	10/2/17	0.311	0.129	273	252	580	307	0.4	<0.1	3.89 9.38	6.12	1,010	632	2,520	1,810
AX-25	10/3/17	0.298	0.205	262	325	1,140	586	0.507	<0.1	4.69 9.2	6.37	795	504	3,980	2,400
AX-25 Re-Sample	3/16/18	-		262	302	-1			-						
AX-26	10/2/17	0.446	0.352	915	666	3,040	1,100	0.4	<0.1	5.07 8.14	6.38	1,200	945	8,300	3,740
AX-27	10/2/17	0.281	0.206	366	462	1,020	652	0.4	<0.1	6.08 7.3	6.19	478	569	3,620	2,490
AX-27 Re-Sample	3/16/18			366	453		7:					478	659		
AX-27 Re-Sample Duplicate	3/16/18	ı		366	456	i						478	648		
AX-28	10/2/17	0.393	0.207	633	664	756	384	0.4	<0.1	4.67 8.55	6.25	2,280	1,670	3,790	3,350
AX-28 Re-Sample	3/16/18			633	634										
AX-29	10/3/17	0.432	0.316	791	392	306	276	0.4	<0.1	2.73 7.01	6.2	1,440	1,110	3,370	2,480
AXMW-1	10/3/17	0.681	0.463	569	477	491	348	0.4	<0.1	5.49 7.09	5.75	2,660	1,990	5,820	3,620
AXMW-2	10/3/17	3.62	2.140	943	644	391	207	1.88	<0.1	4.6 7.63	5.93	3,040	1,990	4,940	3,640


Notes:

- 1. All concentrations in mg/L. pH in standard units.
- 2. Highlighted sample results exceed prediction limits.

Figures

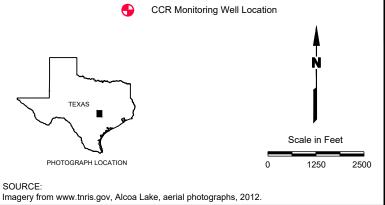
SOURCE: Base map from www.tnris.gov, Alcoa Lake, TX 7.5 min. USGS quadrangle dated 1963, revised 1988.

SANDOW STEAM ELECTRIC STATION

ROCKDALE, TEXAS

Figure 1

SITE LOCATION MAP


PROJECT: 5347E	BY: AJD	REVISIONS
DATE: MAR., 2018	CHECKED: PJB	

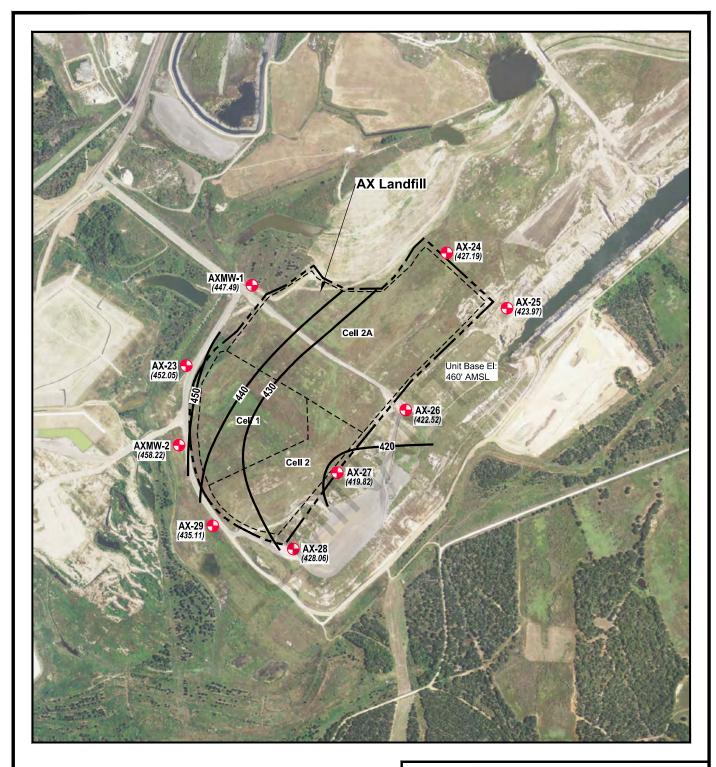
PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

EXPLANATION

SANDOW STEAM ELECTRIC STATION

AX LANDFILL


Figure 2

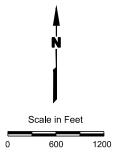
SITE PLAN

PROJECT: 5347E	BY: AJD	REVISIONS
DATE: MAR., 2018	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

EXPLANATION


CCR Monitoring Well

(414.49)

Groundwater Potentiometric Surface (ft. MSL)

— 400 **—**

Groundwater Potentiometric Surface Contour (C.I. = 10 ft.)

SANDOW STEAM ELECTRIC STATION

ROCKDALE, TEXAS

Figure 3

AX LANDFILL GROUNDWATER POTENTIOMETRIC SURFACE MAP OCTOBER 2-3, 2017

PROJECT: 5347E	BY: AJD	REVISIONS
DATE: JAN., 2018	CHECKED: PJB	

PASTOR, BEHLING & WHEELER, LLC

CONSULTING ENGINEERS AND SCIENTISTS

SOURCE

Imagery from www.tnris.gov, Alcoa Lake, aerial photographs, 2012.

Appendix A

Laboratory Analytical Reports

October 11, 2017

Will Vienne Pastor, Behling & Wheeler

2201 Double Creek Dr #4004 Round Rock, Texas 78664

TEL: (512) 671-3434

FAX (512) 671-3446 Order No.: 1710015

RE: Sandow CCR

Dear Will Vienne:

DHL Analytical, Inc. received 9 sample(s) on 10/3/2017 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1710015	6
WorkOrderSampleSummary 1710015	7
PrepDatesReport 1710015	8
AnalyticalDatesReport 1710015	10
Analytical Report 1710015	12
AnalyticalQCSummaryReport 1710015	21

2300 Double Creek Dr. ■ Round Rock, TX 78664

Phone (512) 388-8222 ■ FAX (512) 388-8229
Web: www.dhlanalytical.com
E-Mail: login@dhlanalytical.com

Nº 77895 CHAIN-OF-CUSTODY

CLIENT: Pastor, 1 ADDRESS: 2201 PHONE: 512 - 671 DATA REPORTED TO: ADDITIONAL REPORT	Behli Dou -34: Wi COPI	ng Uble 34 UV ES TO:	& h Cre Fr ieny	shee ek ax/e-n re	Lev Driv MAIL: <u>N</u>	LLC re ster vill. Vienr	100 ne@	4 R	<i>oun</i> wil	d Koo c.c	(k, T	rx 1	P P	O #:	СТ	LOCA ROJEC	TIOI	N OI	R NA	ME:	-	ŝα	nd	lo	W	CC	: <u> </u> R	710	013		F	
Authorize 5% surcharge for TRRP Report? Yes No Field Sample I.D.	A=AI	/ATER R	SI O SI	=PAIN L=SLU)=OTH O=SO	DGE ER	Container Type	# of Containers		0	H ₂ SU ₄ L NaOH L																			F	FIELD NO	OTES	/
AX-24	01	10/2	1/17	1140	W		2		134	7						V			Ī	Τ						X						
AX-27	02	1		1450			2		1	ĺχ	: 1	1													1	Χ						
AX-28	οЗ			1605			2		T	ďχ	1									Τ						X						
AX-26	04			1735			2		il	X				П						T					_	X						
AX-25	0.7	10/3	11-	930	<u> </u>		2	\Box	ì	<u> </u>	-			H	十	\top		十		T					—	χÌ						
AXMW-1	06	10/2	117	1120	<u> </u>		2	\vdash	1	X			-	\vdash	+			+		+	+		_	T	_	χ						
A×MW-Z	07			1			2	-	1					\vdash	\dashv	-		+		+	-			-		<u>~</u> 火						
	08	{		1225			2		H	X	 	-	1	╁	+	-	-	+	-	+		Н	_	-+	$\overline{}$	<u>^</u>	+	-				
Ax-29				1405					1	45		-	╂—	\vdash	+	_	$\vdash \vdash$		_	+	-			\dashv			╁					
AX-23	09	7	<u>/</u>	1620	ļ		2		1	>	41	+	1	-	4	_	\sqcup		- -	+	-					X	-	ļ				
<u></u>									_		╽.		<u> </u>		4	_		_		_	_			_	_		_	<u> </u>				
																				\perp	<u> </u>			\perp		_	\perp					
																															· · · · · · · · · · · · · · · · · · ·	
									Т																							
								П	丁			\top								Ī							T					
									\dashv	+	+	1			1		H	1		T					\neg	十						
	TO MAKE	TPMSAND	CANTO	2100-300-mg	enggaran seban Sebangan				+	$\overline{}$	+	\mathcal{H}			+	+				十	╁			-+	\dashv							
RELINOUISHED BY (Signature)	ore Things	care ways, en	CHIP ON GO	DATE/1	TIME	RECEIVE	D BY:	(Si d ena	atare)	M	12	<u>/</u> /	#			URN A			T184F	╁	ARC	I P AT	(AB)	<u>_</u>	E O	NI V·		l <u> </u>				
MULLULATI				10/	3/17	5.54pm		Ar	1/~	1/2	W	<u>w)</u>	<u> </u>			JSH 🗆					ECF	VIN	G TE	. Од МР:	2	30	C 1	ΓHERI	M #: .	78		
RELINQUISHED/BY: (Signature)				DATE/1	IIME	RÉCEIVE	D BAN	joigna joigna	ature)	•						DAY C														ст Ж	, Not i	JSED
RELINQUISHED BY: (Signature)				DATE/1	ПМЕ	RECEIVE	D BY:	(Signa	ature)							DAY 🗆					ARR	IER:		LO	NE S	TAR	F	EDE)	х	T _{OP}	□от	HER
															N	ORMA			10	1	co	URIE	R DI	ELIV	ERY							
	Г	ו אם ר	DISPOS	SAL@S	5.00 ead	ch □ F	Retur	'n					2		10	THER	<u> </u>	4 14	115	. 🌶	AΗÇ	ND I	DELI'	VER	ED							

John DuPont

From: Will Vienne <will.vienne@pbwllc.com>

Sent:

To: John DuPont

Cc: John Brayton; Keith Starek; Pat Behling

Subject: CCR Sampling

Follow Up Flag: Follow up Completed

Hi John,

We are starting the second phase of sampling for the CCR project, which includes sampling the CCR wells on a semiannual basis. Only Appendix III constituents will be analyzed:

Boron

Calcium

Chloride

Fluoride

Field pH

Sulfate

Total Dissolved

Solids

DHL Analytical, Inc.			
Sample	Receipt Check	klist	
Client Name Pastor, Behling & Wheeler		Date Recei	ved: 10/3/2017
Work Order Number 1710015		Received by	/ JGD
Checklist completed by: 10/4/201 Signature Date		Reviewed by	y 10/4/2017 Initials Date
Carrier name	<u>Hand Delivered</u>		
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on shippping container/cooler?	Yes 🗌	No 🗌	Not Present ☑
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present ☑
Chain of custody present?	Yes 🗹	No 🗆	
Chain of custody signed when relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗆	
Samples in proper container/bottle?	Yes 🗹	No 🗆	
Sample containers intact?	Yes 🗹	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆	
All samples received within holding time?	Yes 🗹	No 🗆	
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌	2.3 °C
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA vials submitted 🗹
Water - pH<2 acceptable upon receipt?	Yes	No 🗹	NA LOT# 8 0 86
	Adjusted?	<i>3</i>	Checked by £
Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt?	Yes 🗌	No 🗆	NA ☑ LOT#
	Adjusted?		Checked by
Any No response must be detailed in the comments section below.	- <u>- </u>		
Client contacted Date contacted:		Pers	on contacted
Contacted by: Regarding:			-
comments: Sample ADC-24 recei	0 ,	1 11 5	,)
Comments: 3 wry 2 113 - 2 1 7 2 2 2 3	vex wit	4 pH/	۷.
Corrective Action Sample pt adjusted	+ to .	` n W/	/ HNO (104 #11750)
		101 4	103 (606 %)
t, pHC2			

Page 1 of 1

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR
Lab Order: 1710015

CASE NARRATIVE

Date: 11-Oct-17

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method E300 - Anions Analysis Method M2540C - TDS Analysis

LOG IN

The samples were received and log-in performed on 10/3/17. A total of 9 samples were received. Nitric acid was added to sample AX-24 upon arrival at DHL Analytical. The samples arrived in good condition and were properly packaged.

METALS ANALYSIS

For Metals analysis performed on 10/9/17 the matrix spike and matrix spike duplicate recoveries were out of control limits for Calcium. These are flagged accordingly in the QC summary report. The sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for this analyte. No further corrective actions were taken.

For Metals analysis performed on 10/9/17 the PDS recovery was slightly above control limits for Calcium. This is flagged accordingly. The serial dilution was within control limits for this analyte. No further corrective actions were taken.

Date: 11-Oct-17

Pastor, Behling & Wheeler **CLIENT:**

Project: Sandow CCR **Work Order Sample Summary** Lab Order: 1710015

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1710015-01	AX-24		10/02/17 11:40 AM	10/3/2017
1710015-02	AX-27		10/02/17 02:50 PM	10/3/2017
1710015-03	AX-28		10/02/17 04:05 PM	10/3/2017
1710015-04	AX-26		10/02/17 05:35 PM	10/3/2017
1710015-05	AX-25		10/03/17 09:30 AM	10/3/2017
1710015-06	AXMW-1		10/03/17 11:20 AM	10/3/2017
1710015-07	AXMW-2		10/03/17 12:25 PM	10/3/2017
1710015-08	AX-29		10/03/17 02:05 PM	10/3/2017
1710015-09	AX-23		10/03/17 04:20 PM	10/3/2017

Lab Order: 1710015

Client: Pastor, Behling & Wheeler

Project: Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1710015-01A	AX-24	10/02/17 11:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-24	10/02/17 11:40 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-01B	AX-24	10/02/17 11:40 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-24	10/02/17 11:40 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-24	10/02/17 11:40 AM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-02A	AX-27	10/02/17 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-27	10/02/17 02:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-02B	AX-27	10/02/17 02:50 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-27	10/02/17 02:50 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-27	10/02/17 02:50 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-03A	AX-28	10/02/17 04:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-28	10/02/17 04:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-03B	AX-28	10/02/17 04:05 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-28	10/02/17 04:05 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-28	10/02/17 04:05 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-04A	AX-26	10/02/17 05:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-26	10/02/17 05:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-04B	AX-26	10/02/17 05:35 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-26	10/02/17 05:35 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-26	10/02/17 05:35 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-05A	AX-25	10/03/17 09:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-25	10/03/17 09:30 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-05B	AX-25	10/03/17 09:30 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-25	10/03/17 09:30 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-25	10/03/17 09:30 AM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-06A	AXMW-1	10/03/17 11:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AXMW-1	10/03/17 11:20 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-06B	AXMW-1	10/03/17 11:20 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668

Page 1 of 2

Lab Order: 1710015

Client: Pastor, Behling & Wheeler

Project: Sandow CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1710015-06B	AXMW-1	10/03/17 11:20 AM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AXMW-1	10/03/17 11:20 AM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-07A	AXMW-2	10/03/17 12:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AXMW-2	10/03/17 12:25 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-07B	AXMW-2	10/03/17 12:25 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AXMW-2	10/03/17 12:25 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AXMW-2	10/03/17 12:25 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-08A	AX-29	10/03/17 02:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-29	10/03/17 02:05 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-08B	AX-29	10/03/17 02:05 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-29	10/03/17 02:05 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-29	10/03/17 02:05 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671
1710015-09A	AX-23	10/03/17 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
	AX-23	10/03/17 04:20 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/06/17 08:19 AM	82680
1710015-09B	AX-23	10/03/17 04:20 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-23	10/03/17 04:20 PM	Aqueous	E300	Anion Preparation	10/05/17 09:38 AM	82668
	AX-23	10/03/17 04:20 PM	Aqueous	M2540C	TDS Preparation	10/05/17 09:59 AM	82671

Lab Order: 1710015

Client: Pastor, Behling & Wheeler

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1710015-01A	AX-24	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:51 PM	ICP-MS4_171009C
	AX-24	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:29 PM	ICP-MS4_171009C
1710015-01B	AX-24	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 01:38 PM	IC4_171005A
	AX-24	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 04:26 PM	IC4_171005A
	AX-24	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
710015-02A	AX-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:31 PM	ICP-MS4_171009C
	AX-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:53 PM	ICP-MS4_171009C
710015-02B	AX-27	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 02:14 PM	IC4_171005A
	AX-27	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 04:38 PM	IC4_171005A
	AX-27	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
710015-03A	AX-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:33 PM	ICP-MS4_171009C
	AX-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:55 PM	ICP-MS4_171009C
710015-03B	AX-28	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 04:50 PM	IC4_171005A
	AX-28	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 02:26 PM	IC4_171005A
	AX-28	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
710015-04A	AX-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:35 PM	ICP-MS4_171009C
	AX-26	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:57 PM	ICP-MS4_171009C
710015-04B	AX-26	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 02:38 PM	IC4_171005A
	AX-26	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 05:02 PM	IC4_171005A
	AX-26	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
710015-05A	AX-25	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:59 PM	ICP-MS4_171009C
	AX-25	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:37 PM	ICP-MS4_171009C
710015-05B	AX-25	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 02:50 PM	IC4_171005A
	AX-25	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 05:14 PM	IC4_171005A
	AX-25	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
710015-06A	AXMW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	2	10/09/17 12:39 PM	ICP-MS4_171009C
	AXMW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 02:01 PM	ICP-MS4_171009C
710015-06B	AXMW-1	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 03:02 PM	IC4_171005A

Page 1 of 2

Lab Order: 1710015

Client: Pastor, Behling & Wheeler

Project: Sandow CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1710015-06B	AXMW-1	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 05:26 PM	IC4_171005A
	AXMW-1	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
1710015-07A	AXMW-2	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	10	10/09/17 12:41 PM	ICP-MS4_171009C
	AXMW-2	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 02:03 PM	ICP-MS4_171009C
1710015-07B	AXMW-2	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 03:14 PM	IC4_171005A
	AXMW-2	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 05:38 PM	IC4_171005A
	AXMW-2	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
1710015-08A	AX-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:43 PM	ICP-MS4_171009C
	AX-29	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 02:05 PM	ICP-MS4_171009C
1710015-08B	AX-29	Aqueous	E300	Anions by IC method - Water	82668	100	10/05/17 03:26 PM	IC4_171005A
	AX-29	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 05:50 PM	IC4_171005A
	AX-29	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B
1710015-09A	AX-23	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	1	10/09/17 12:26 PM	ICP-MS4_171009C
	AX-23	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	82680	50	10/09/17 01:47 PM	ICP-MS4_171009C
1710015-09B	AX-23	Aqueous	E300	Anions by IC method - Water	82668	10	10/05/17 03:38 PM	IC4_171005A
	AX-23	Aqueous	E300	Anions by IC method - Water	82668	1	10/05/17 06:02 PM	IC4_171005A
	AX-23	Aqueous	M2540C	Total Dissolved Solids	82671	1	10/06/17 08:30 AM	WC_171005B

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/02/17 11:40 AM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: SP
Boron	0.129	0.0100	0.0300	mg/L	1	10/09/17 12:29 PM
Calcium	252	5.00	15.0	mg/L	50	10/09/17 01:51 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: JL
Chloride	307	30.0	100	mg/L	100	10/05/17 01:38 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	10/05/17 04:26 PM
Sulfate	632	100	300	mg/L	100	10/05/17 01:38 PM
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	1810	50.0	50.0	mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-01

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/02/17 02:50 PM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A				Analyst: SP
Boron	0.206	0.0100	0.0300		mg/L	1	10/09/17 12:31 PM
Calcium	462	5.00	15.0		mg/L	50	10/09/17 01:53 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: JL
Chloride	652	30.0	100		mg/L	100	10/05/17 02:14 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	10/05/17 04:38 PM
Sulfate	569	100	300		mg/L	100	10/05/17 02:14 PM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	2490	50.0	50.0		mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-02

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/02/17 04:05 PM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: SP
Boron	0.207	0.0100	0.0300	mg/L	1	10/09/17 12:33 PM
Calcium	664	5.00	15.0	mg/L	50	10/09/17 01:55 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: JL
Chloride	384	30.0	100	mg/L	100	10/05/17 02:26 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	10/05/17 04:50 PM
Sulfate	1670	100	300	mg/L	100	10/05/17 02:26 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	3350	50.0	50.0	mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-03

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/02/17 05:35 PM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: SP	
Boron	0.352	0.0100	0.0300		mg/L	1	10/09/17 12:35 PM
Calcium	666	5.00	15.0		mg/L	50	10/09/17 01:57 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: JL
Chloride	1100	30.0	100		mg/L	100	10/05/17 02:38 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	10/05/17 05:02 PM
Sulfate	945	100	300		mg/L	100	10/05/17 02:38 PM
TOTAL DISSOLVED SOLIDS		M254	0C				Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	3740	50.0	50.0		mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-04

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/03/17 09:30 AM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A				Analyst: SP
Boron	0.205	0.0100	0.0300		mg/L	1	10/09/17 12:37 PM
Calcium	325	5.00	15.0		mg/L	50	10/09/17 01:59 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: JL
Chloride	586	30.0	100		mg/L	100	10/05/17 02:50 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	10/05/17 05:14 PM
Sulfate	504	100	300		mg/L	100	10/05/17 02:50 PM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	2400	50.0	50.0		mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-05

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E

Lab Order: 1710015

Date: 11-Oct-17

Client Sample ID: AXMW-1

Lab ID: 1710015-06

Collection Date: 10/03/17 11:20 AM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: SP
Boron	0.463	0.0200	0.0600	mg/L	2	10/09/17 12:39 PM
Calcium	477	5.00	15.0	mg/L	50	10/09/17 02:01 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: JL
Chloride	348	30.0	100	mg/L	100	10/05/17 03:02 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	10/05/17 05:26 PM
Sulfate	1990	100	300	mg/L	100	10/05/17 03:02 PM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	3620	50.0	50.0	mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E

Lab Order: 1710015

Date: 11-Oct-17

Client Sample ID: AXMW-2

Lab ID: 1710015-07

Collection Date: 10/03/17 12:25 PM

Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW602	20A			Analyst: SP
Boron	2.14	0.100	0.300	mg/L	10	10/09/17 12:41 PM
Calcium	644	5.00	15.0	mg/L	50	10/09/17 02:03 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: JL
Chloride	207	30.0	100	mg/L	100	10/05/17 03:14 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	10/05/17 05:38 PM
Sulfate	1990	100	300	mg/L	100	10/05/17 03:14 PM
TOTAL DISSOLVED SOLIDS		M2540C				Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	3640	50.0	50.0	mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/03/17 02:05 PM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW60	20A				Analyst: SP
Boron	0.316	0.0100	0.0300		mg/L	1	10/09/17 12:43 PM
Calcium	392	5.00	15.0		mg/L	50	10/09/17 02:05 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: JL
Chloride	276	30.0	100		mg/L	100	10/05/17 03:26 PM
Fluoride	<0.100	0.100	0.400		mg/L	1	10/05/17 05:50 PM
Sulfate	1110	100	300		mg/L	100	10/05/17 03:26 PM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: BTJ
Total Dissolved Solids (Residue, Filterable)	2480	50.0	50.0		mg/L	1	10/06/17 08:30 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-08

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: Pastor, Behling & Wheeler

Project: Sandow CCR

Project No: 5164E **Collection Date:** 10/03/17 04:20 PM

Lab Order: 1710015 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed		
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: SP		
Boron	0.314	0.0100	0.0300	mg/L	1	10/09/17 12:26 PM		
Calcium	316	5.00	15.0	mg/L	50	10/09/17 01:47 PM		
ANIONS BY IC METHOD - WATER		E30	0			Analyst: JL		
Chloride	184	3.00	10.0	mg/L	10	10/05/17 03:38 PM		
Fluoride	<0.100	0.100	0.400	mg/L	1	10/05/17 06:02 PM		
Sulfate	631	10.0	30.0	mg/L	10	10/05/17 03:38 PM		
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: BTJ		
Total Dissolved Solids (Residue, Filterable)	1620	50.0	50.0	mg/L	1	10/06/17 08:30 AM		

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 11-Oct-17

Lab ID: 1710015-09

- DF Dilution Factor
 - J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 11-Oct-17

CLIENT: Pastor, Behling & Wheeler

Work Order: 1710015

ICP-MS4_171009C **RunID: Project:** Sandow CCR

The QC data in batch 82680 applies to the following samples: 1710015-01A,	, 1710015-02A, 1710015-03A, 1710015-04A, 1710015-05A, 1710015-
06A, 1710015-07A, 1710015-08A, 1710015-09A	

ANALYTICAL QC SUMMARY REPORT

MB-82680	Batch ID:	82680		TestNo:	sw	/6020A		Units:	mg/L	
MBLK	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 12:18	:00 PM	Prep Date:	10/6/20	17
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	DLimit Qual
		<0.0100	0.0300							
		<0.100	0.300							
LCS-82680	Batch ID:	82680		TestNo:	SW	/6020A		Units:	mg/L	
LCS	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 12:20	:00 PM	Prep Date:	10/6/20	17
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	DLimit Qual
		0.203	0.0300	0.200	0	101	80	120		
		5.18	0.300	5.00	0	104	80	120		
LCSD-82680	Batch ID:	82680		TestNo:	sw	6020A		Units:	mg/L	
LCSD	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 12:22	::00 PM	Prep Date:	10/6/20	17
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	DLimit Qual
		0.209	0.0300	0.200	0	104	80	120	2.84	15
		5.18	0.300	5.00	0	104	80	120	0.014	15
1710015-09A SD	Batch ID:	82680	1	TestNo:	sw	/6020A		Units:	mg/L	
SD	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 12:28	:00 PM	Prep Date:	10/6/20	17
				,						
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RF	DLimit Qual
		Result 0.342	RL 0.150	SPK value		%REC	LowLimi	t HighLimit %	8.46	PDLimit Qual
1710015-09A PDS	Batch ID:	0.342			Ref Val 0.314	%REC /6020A	LowLimi	t HighLimit %		
		0.342 82680		0 TestNo:	Ref Val 0.314				8.46	10
1710015-09A PDS	Batch ID:	0.342 82680	0.150	0 TestNo:	Ref Val 0.314	/6020A	7:00 PM	Units:	8.46 mg/L 10/6/20	10
1710015-09A PDS	Batch ID:	0.342 82680 ICP-MS4	0.150 _ 171009C	0 TestNo: Analysis	Ref Val 0.314 SW Date: 10/	/6020A 9/2017 12:47	7:00 PM	Units: Prep Date:	8.46 mg/L 10/6/20	10
1710015-09A PDS	Batch ID:	0.342 82680 ICP-MS4 Result 0.501	0.150 _ 171009C _RL	0 TestNo: Analysis	Ref Val 0.314 SW Date: 10/ Ref Val 0.314	/6020A 9/2017 12:47 %REC	:00 PM	Units: Prep Date: t HighLimit %	8.46 mg/L 10/6/20	10
1710015-09A PDS PDS	Batch ID:	0.342 82680 ICP-MS4 Result 0.501 82680	0.150 _ 171009C _RL	0 TestNo: Analysis SPK value 0.200 TestNo:	Ref Val 0.314 SW Date: 10/ Ref Val 0.314	/6020A 9/2017 12:47 %REC 93.2	7: 00 PM LowLimi 80	Units: Prep Date: t HighLimit %	8.46 mg/L 10/6/20 GRPD RE	10 17 PDLimit Qual
1710015-09A PDS PDS 1710015-09A MS	Batch ID: Run ID:	0.342 82680 ICP-MS4 Result 0.501 82680	0.150 _171009C RL 0.0300	0 TestNo: Analysis SPK value 0.200 TestNo:	Ref Val 0.314 SW Date: 10/ Ref Val 0.314	/6020A 9/2017 12:47 %REC 93.2	2:00 PM LowLimi 80 3:00 PM	Units: Prep Date: t HighLimit % 120 Units:	8.46 mg/L 10/6/20 RPD RF mg/L 10/6/20	10 17 PDLimit Qual
	LCS-82680 LCS LCSD-82680 LCSD	MBLK Run ID: LCS-82680 Batch ID: LCS Run ID: LCSD-82680 Batch ID: LCSD Run ID:	MBLK Run ID: ICP-MS4 Result <0.0100	MBLK Run ID: ICP-MS4_171009C Result RL <0.0100	MBLK Run ID: ICP-MS4_171009C Analysis Result RL SPK value <0.0100	MBLK Run ID: ICP-MS4_171009C Analysis Date: 10/ Result RL SPK value Ref Value <0.0100	MBLK Run ID: ICP-MS4_171009C Analysis Date: 10/9/2017 12:18 Result RL SPK value Ref Val %REC <0.0100	MBLK Run ID: ICP-MS4_171009C Analysis Date: 10/9/2017 12:18:00 PM Result RL SPK value Ref Val %REC LowLimit < 0.0100	MBLK Run ID: ICP-MS4_171009C Analysis Date: 10/9/2017 12:18:00 PM Prep Date: 10/9/2017 12:18:00 PM Units: 10/9/2017 12:18:10 PM Prep Date: 10/9/2017 12:18:10 PM	MBLK Run ID: ICP-MS4_171009C Analysis Date: 10/9/2017 12:18:00 PM Prep Date: 10/6/20 PM 10/6/20 PM Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RF RPD RF <0.0100

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 1 of 7

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAC certified

Work Order: 1710015

ANALYTICAL QC SUMMARY REPORT

Project: Sandow CCR RunID: ICP-MS4_171009C

Sample ID	1710015-09A MSD	Batch ID:	82680		TestNo:	SW	/6020A		Units:	mg/L		
SampType: I	MSD	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 12:50	:00 PM	Prep Date:	10/6/20	17	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Boron			0.515	0.0300	0.200	0.314	100	80	120	0.713	15	
Sample ID	1710015-09A SD	Batch ID:	82680		TestNo:	SW	/6020A		Units:	mg/L		
SampType:	SD	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 1:49:0	00 PM	Prep Date:	10/6/20	17	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			320	75.0	0	316				1.28	10	
Sample ID	1710015-09A PDS	Batch ID:	82680		TestNo:	SW	/6020A		Units:	mg/L		
SampType: I	PDS	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 2:09:0	00 PM	Prep Date:	10/6/20	17	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			626	15.0	250	316	124	80	120			S
Sample ID	1710015-09A MS	Batch ID:	82680		TestNo:	SW	/6020A		Units:	mg/L		
SampType: I	MS	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 2:11:0	00 PM	Prep Date:	10/6/20	17	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			314	15.0	5.00	316	-30.9	80	120			S
Sample ID	1710015-09A MSD	Batch ID:	82680	. 1	TestNo:	SW	/6020A		Units:	mg/L		
SampType: I	MSD	Run ID:	ICP-MS4	_171009C	Analysis	Date: 10/	9/2017 2:13:0	00 PM	Prep Date:	10/6/20	17	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RF	PDLimit	Qual
Calcium			318	15.0	5.00	316	40.1	80	120	1.12	15	S

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAC certified

Page 2 of 7

Work Order: 1710015 Sandow CCR **Project:**

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_171009C **RunID:**

Sample ID ICV-17	1009 Batch ID	: R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 10:07	7:00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0991	0.0300	0.100	0	99.1	90	110	
Calcium		2.55	0.300	2.50	0	102	90	110	
Sample ID LCVL-	171009 Batch ID	R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 10:14	1:00 AM	Prep Date	: :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0208	0.0300	0.0200	0	104	70	130	
Calcium		0.105	0.300	0.100	0	105	70	130	
Sample ID CCV2-	171009 Batch ID	R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 11:22	2:00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.212	0.0300	0.200	0	106	90	110	
Calcium		5.18	0.300	5.00	0	104	90	110	
Sample ID LCVL2	-171009 Batch ID	R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 11:26	6:00 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0244	0.0300	0.0200	0	122	70	130	
Calcium		0.107	0.300	0.100	0	107	70	130	
Sample ID CCV3-	171009 Batch ID	R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 12:57	7:00 PM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.218	0.0300	0.200	0	109	90	110	
Calcium		5.14	0.300	5.00	0	103	90	110	
Sample ID LCVL3	-171009 Batch ID	R94582		TestNo:	SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	1_171009C	Analysis	s Date: 10/9	9/2017 1:09:	00 PM	Prep Date	: :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
								100	
Boron		0.0246	0.0300	0.0200	0	123	70	130	

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

Page 3 of 7

R

Work Order: 1710015
Project: Sandow CO

ANALYTICAL QC SUMMARY REPORT

Sandow CCR RunID: ICP-MS4_171009C

Sample ID CCV4-171009	Batch ID:	R94582		TestNo:	SW	6020A		Units:	mg/L	
SampType: CCV	Run ID:	ICP-MS4_	171009C	Analysis	Date: 10/9	/2017 1:22:	00 PM	Prep Date):	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit	Qual
Calcium		5.14	0.300	5.00	0	103	90	110		
Sample ID LCVL4-171009	Batch ID:	R94582		TestNo:	swe	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS4_	171009C	Analysis	Date: 10/9	/2017 1:28:	00 PM	Prep Date	: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit	Qual
Calcium		0.0999	0.300	0.100	0	99.9	70	130		

Sample ID CCV5-171009	Batch ID:	R94582		TestNo:	SWe	6020A		Units:	mg/L	
Sample ID CCV5-171009 SampType: CCV	Batch ID: Run ID:		171009C	TestNo:	-	6020A /2017 2:15:	00 PM	Units: Prep Date	J	
·		R94582	171009C RL	TestNo:	-			Prep Date	J	t Qual
SampType: CCV		R94582 ICP-MS4_	-	TestNo: Analysis	Date: 10/9	/2017 2:15:		Prep Date	»:	t Qual
SampType: CCV Analyte		R94582 ICP-MS4_ Result	RL	TestNo: Analysis SPK value	Date: 10/9 Ref Val	/2017 2:15 : %REC	LowLimit	Prep Date	»:	t Qual
SampType: CCV Analyte Calcium	Run ID:	R94582 ICP-MS4_ Result 5.07	RL 0.300	TestNo: Analysis SPK value 5.00 TestNo:	Date: 10/9 Ref Val 0 SW6	%REC	LowLimit 90	Prep Date HighLimit	%RPD RPDLimit	t Qual
SampType: CCV Analyte Calcium Sample ID LCVL5-171009	Run ID:	R94582 ICP-MS4_ Result 5.07 R94582	RL 0.300	TestNo: Analysis SPK value 5.00 TestNo:	Date: 10/9 Ref Val 0 SW6	%REC 101	LowLimit 90 00 PM	Prep Date HighLimit 110 Units: Prep Date	%RPD RPDLimit	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 7

R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order: 1710015

ANALYTICAL QC SUMMARY REPORT

Project: Sandow CCR RunID: IC4_171005A

The QC data in batch 82668 applies to the following samples: 1710015-01B, 1710015-02B, 1710015-03B, 1710015-04B, 1710015-05B, 1710015-06B, 1710015-07B, 1710015-08B, 1710015-09B

	15-07B, 1710015-08E										
Sample ID	MB-82668	Batch ID:	82668		TestNo:	E300	1		Units:	mg/L	
SampType:	MBLK	Run ID:	IC4_171	005A	Analysis	Date: 10/5/	2017 12:13	3:44 PM	Prep Date:	10/5/2	017
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride			<0.300	1.00							
Fluoride			<0.100	0.400							
Sulfate			<1.00	3.00							
Sample ID	LCS-82668	Batch ID:	82668		TestNo:	E300)		Units:	mg/L	
SampType:	LCS	Run ID:	IC4_171	005A	Analysis	Date: 10/5/	2017 12:25	5:44 PM	Prep Date:	10/5/2	017
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride			9.89	1.00	10.00	0	98.9	90	110		
Fluoride			3.98	0.400	4.000	0	99.5	90	110		
Sulfate			29.5	3.00	30.00	0	98.3	90	110		
Sample ID	LCSD-82668	Batch ID:	82668		TestNo:	E300			Units:	mg/L	
SampType:	LCSD	Run ID:	IC4_171	005A	Analysis	Date: 10/5/	2017 12:37	7:44 PM	Prep Date:	10/5/2	017
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride			9.85	1.00	10.00	0	98.5	90	110	0.453	20
Fluoride			3.97	0.400	4.000	0	99.4	90	110	0.129	20
Sulfate			29.3	3.00	30.00	0	97.7	90	110	0.601	20
Sample ID	1710015-01BMS	Batch ID:	82668		TestNo:	E300)		Units:	mg/L	
SampType:	MS	Run ID:	IC4_171	005A	Analysis	Date: 10/5/	2017 1:50:	18 PM	Prep Date:	10/5/2	017
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride			2400	100	2000	307.0	104	90	110		
Fluoride			2040	40.0	2000	0	102	90	110		
Sulfate			2700	300	2000	632.2	103	90	110		
Sample ID	1710015-01BMSD	Batch ID:	82668		TestNo:	E300)		Units:	mg/L	
SampType:	MSD	Run ID:	IC4_171	005A	Analysis	Date: 10/5/	2017 2:02:	18 PM	Prep Date:	10/5/2	017
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride			2400	100	2000	307.0	105	90	110	0.098	20
Fluoride			2030	40.0	2000	0	102	90	110	0.345	20
Sulfate			2650	300	2000	632.2	101	90	110	1.79	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 5 of 7

S Spike Recovery outside control limits

Work Order: 1710015
Project: Sandow CCR

ANALYTICAL QC SUMMARY REPORT

RunID: IC4_171005A

	Sandow	CCR				T(UIII)		101_1710	0011
Sample ID	ICV-171005	Batch ID: R94547		TestNo:	E30	0		Units:	mg/L
SampType:	ICV	Run ID: IC4_171	005A	Analysis	Date: 10/5	/2017 11:4	9:44 AM	Prep Date	e:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride		24.9	1.00	25.00	0	99.6	90	110	
Fluoride		9.87	0.400	10.00	0	98.7	90	110	
Sulfate		75.4	3.00	75.00	0	101	90	110	
Sample ID	CCV1-171005	Batch ID: R94547		TestNo:	E30	0		Units:	mg/L
SampType:	CCV	Run ID: IC4_171	005A	Analysis	Date: 10/5	/2017 4:02	18 PM	Prep Date	: :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride		9.91	1.00	10.00	0	99.1	90	110	
Fluoride		4.02	0.400	4.000	0	101	90	110	
Sulfate		29.5	3.00	30.00	0	98.3	90	110	
Sample ID	CCV2-171005	Batch ID: R94547		TestNo:	E30	0		Units:	mg/L
SampType:	CCV	Run ID: IC4_171	005A	Analysis	Date: 10/5	/2017 6:26	18 PM	Prep Date	: :
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride		10.1	1.00	10.00	0	101	90	110	
Fluoride		4.05	0.400	4.000	0	101	90	110	
Sulfate		31.0	3.00	30.00	0	103	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 6 of 7

R RPD outside accepted control limits

S Spike Recovery outside control limits

Work Order: 1710015

Analyte

Total Dissolved Solids (Residue, Filtera

ANALYTICAL QC SUMMARY REPORT

Project: Sandow CCR RunID: WC_171005B

Bandow C								· C_1/1000	_	
			oles: 1710	0015-01B, 17100	15-02B, 17	10015-03B,	1710015-	04B, 1710015	5-05B, 1710	015-
MB-82671	Batch ID:	82671		TestNo:	M25	40C		Units:	mg/L	
MBLK	Run ID:	WC_17100	5B	Analysis	Date: 10/6	/2017 8:30:	00 AM	Prep Date:	10/5/2017	
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDI	imit Qual
lved Solids (Residue,	Filtera	<10.0	10.0							
LCS-82671	Batch ID:	82671		TestNo:	M25	40C		Units:	mg/L	
LCS	Run ID:	WC_17100	5B	Analysis	Date: 10/6	/2017 8:30:	00 AM	Prep Date:	10/5/2017	
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDI	imit Qual
lved Solids (Residue,	Filtera	741	10.0	745.6	0	99.4	90	113		
1710036-03B-DUP	Batch ID:	82671		TestNo:	M25	40C		Units:	mg/L	
DUP	Run ID:	WC_17100	5B	Analysis	Date: 10/6	/2017 8:30:	00 AM	Prep Date:	10/5/2017	
		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDI	imit Qual
lved Solids (Residue,	Filtera	2510	50.0	0	2545				1.38	5
1710028-01A-DUP	Batch ID:	82671		TestNo:	M25	40C		Units:	mg/L	
DUP	Run ID:	WC_17100	5B	Analysis	Date: 10/6	/2017 8:30:	00 AM	Prep Date:	10/5/2017	
	ta in batch 82671 appl 15-07B, 1710015-08B MB-82671 MBLK Ived Solids (Residue, LCS-82671 LCS Ived Solids (Residue, 1710036-03B-DUP DUP	ta in batch 82671 applies to the for 15-07B, 1710015-08B, 1710015-MB-82671 Batch ID: MBLK Run ID: Med Solids (Residue, Filtera LCS-82671 Batch ID: Run ID: Med Solids (Residue, Filtera 1710036-03B-DUP Batch ID: Run ID: Med Solids (Residue, Filtera 1710028-01A-DUP Batch ID: Med Solids (R	### In the content of the collowing samples to the following samples to	### Action	### Analysis ### An	### Analysis Date: 10/6 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 745.6 0 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 741 10.0 50.0 0 2545 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 2510 50.0 0 2545 ### TestNo: M25 ### Result RL SPK value Ref Valued Solids (Residue, Filtera 2510 50.0 0 2545 ### TestNo: M25 ### TestNo: M25	### In the patch 82671 applies to the following samples: 1710015-01B, 1710015-02B, 1710015-03B, 15-07B, 1710015-08B, 1710015-09B MB-82671	In a in batch 82671 applies to the following samples: 1710015-01B, 1710015-02B, 1710015-03B, 1710015-09B MB-82671 Batch ID: 82671 TestNo: M2540C MBLK Run ID: WC_171005B Analysis Date: 10/6/2017 8:30:00 AM Result RL SPK value Ref Val %REC LowLimit Ved Solids (Residue, Filtera <10.0 10.0 LCS-82671 Batch ID: 82671 TestNo: M2540C LCS Run ID: WC_171005B Analysis Date: 10/6/2017 8:30:00 AM Result RL SPK value Ref Val %REC LowLimit Ved Solids (Residue, Filtera 74.0.0 10.0 Result RL SPK value Ref Val %REC LowLimit Ved Solids (Residue, Filtera 74.1 10.0 745.6 0 99.4 90.0 1710036-03B-DUP Batch ID: 82671 TestNo: M2540C DUP Run ID: WC_171005B Analysis Date: 10/6/2017 8:30:00 AM Result RL SPK value Ref Val %REC LowLimit Ved Solids (Residue, Filtera 25.10 50.0 0 2545 1710028-01A-DUP Batch ID: 82671 TestNo: M2540C	Talin batch 82671 applies to the following samples: 1710015-01B, 1710015-02B, 1710015-03B, 1710015-04B, 17100	Talin batch 82671 applies to the following samples: 1710015-01B, 1710015-02B, 1710015-03B, 1710015-04B, 1710015-05B, 1710015-07B, 1710015-08B, 1710015-09B MB-82671

SPK value

0

Ref Val

588.0

%REC

LowLimit HighLimit %RPD RPDLimit Qual

0.683

5

Page 7 of 7

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

Result

584

RL

10.0

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

R

March 23, 2018

Craig Bennett
BBA Engineering

165 N. Lampasas St.

Bertram, TX 78605

TEL: (512) 355-9198

FAX (512) 355-9197 Order No.: 1803163

RE: Alcoa AX LF

Dear Craig Bennett:

DHL Analytical, Inc. received 5 sample(s) on 3/16/2018 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1803163	5
WorkOrderSampleSummary 1803163	6
PrepDatesReport 1803163	
AnalyticalDatesReport 1803163	8
Analytical Report 1803163	9
AnalyticalQCSummaryReport 1803163	14

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com

E-Mail: login@dhlanalytical.com

№ 78472 CHAIN-OF-CUSTODY

CLIENT: BULLOCK BENNETT & ASSOCIATES, DLC ADDRESS: 165 IV. LAMPASAS ST, BERTRAM, TX 78605 PHONE: 512.355.9198 FAX/E-MAIL: 512,355,9197 DATA REPORTED TO: CRAIG BENNETT, JEFF TO NEW VISTRA ENER ADDITIONAL REPORT COPIES TO: JUFE A. JONESO VISHRUENERGY. WIN											4	PC PR	OJEC	2 - T L	7 Z OCA	<i>S=</i> 7	í	کر (ر R NA	١M٤	: <i>1</i>	41	<u> </u>	74		7,0		-6	1 <i>8</i> =	PAGE O 3	16 3	<u>}</u>			-
Authorize 5% surcharge for TRRP Report?	A=AI L=LIC SE=S	/ATER SI R O	=PAIN _=SLU =OTH D=SO	DGE ER	Container	Containers			H ₂ SO ₄ U NaOH U ICE	0		ATS																						
Field Sample I.D.	DHL Lab#	Date	Time	Matrix	Type	#	모	호 :	줐	5	N.		``\}``\												\% <u>\</u>		<u> γ</u> υ	17	<u>/_</u>	FI 	ELD N	OTES		
MW-IV	01	3, 16,18	030	للأ	250alP	2		7			*		4						\perp			1	_	4	_	4	4	_						-
AX - 25	02	<	1056			i		4		1	↓_							_	\perp	_ -	\downarrow	+	_	4	-	4	\downarrow	_						\dashv
AX-27	03		1151			2		4	1/		1		77	\perp	_	Ļ.,		_	4	4	+	4	\dashv	-		4	4	\dashv						-
AX -28	04		1221			ł		4		1				\bot	<u> </u>	<u> </u>	Щ	_	_	\downarrow	- -	4	+	_	4	4	\downarrow	4			<u>.</u>			
RINSATE	05	A	123=	₩ _	k	2		4	1	//			_	_	4_	_		_	4	_	-	+	_	+	- -	4	4	4						\dashv
	_										3			_	\bot	ļ	\sqcup	\perp	_	4	+	-	\dashv	+	\dashv	_	-	-		_				-
										L	⊥_	Ш		\downarrow	1_	ļ.,		_	4	4		+		+	_	\dashv	\dashv	-						\dashv
										\downarrow	<u> </u>	1.4		_	_	_		_	4	+		\dashv	\dashv	+	\dashv	_	-							-
						_		4			_	<u> </u>	_	_	┦-	┡	-		-		_	4	+		-	+		\dashv						-
								_				Ш			_	╀		_	4	+	_	-	_	+		_	-	\dashv						\dashv
									┸				\perp		\bot	_		_	4	4	_	\dashv	_	4	\dashv	-	-	\dashv						
											_			_		1		_	_	4	_	_	_	_	\dashv	_	_							_
													\perp	┙	_	↓_			_	4	_	_	_		4	_	_	_						
						1								┙		_				_	\downarrow	_	_			_	4	_						_
- 0 - /	$\uparrow \gamma$	<u> </u>	Ī																								_							_
AVX (C MATERIAL CONTROL OF THE PARTY		\$1.60 m		50 100																												_
RELINQUISHIO BY: (Signature)	Z	3.11	DATE/	TIME 1337 TIME	RECEIVE	D BY:								L				TIN IRST	[LA REC	BOF CEIV	RAT /INC	ORY 5 TEI	<mark>' US</mark> MP:	ξ Z	الار NL۱	Y: 	. Т	HERN	۸ #: _	70	5_		
RELINQUISHED BY: (Signature)			DATÆ/	TIME	RECEIVE	:D BY:	(Sign	ature	!)					1 I	YAC	u c <i>i</i>	ALL F	IRST		CU	STO	DY	SEA	LS:) BR	ОК	ΕN	□ II	NTAC	T 之	1 NO	ΓUSE	:D
RELINQUISHED BY: (Signature)			DATE/	TIME	RECEIVE	D BY:	(Sign	ature	2)					NC		\L iZ	ſ			CA	RRIE Zou	≘R: IRIE	D R DJ	LO1 ELIV	NE S /ERY	STAF	3	□ F	EDEX		UPS		OTHE	R
	NORMAL DISPOSAL @ \$5.00 each Return 3 OTHER OTHER DELIVERED																																	

Client Name BBA Engineering

Sample Receipt Checklist

Date Received:

3/16/2018

Work Order Number 1803163		Received by EL							
Checklist completed by:	3/16/201	8	Reviewed by	(101)	3/16/2018				
Signature	Date			Initials	Date				
	Carrier name	Hand Delivered							
Shipping container/cooler in good condition?		Yes 🗹	No 🗆	Not Present					
Custody seals intact on shippping container/coo	ler?	Yes	No 🗆	Not Present 🗹					
Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹					
Chain of custody present?		Yes 🗹	No \square						
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗆						
Chain of custody agrees with sample labels?		Yes 🔽	No 🗆						
Samples in proper container/bottle?		Yes 🗹	No 🗆						
Sample containers intact?		Yes 🗹	No 🗔	>					
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌						
All samples received within holding time?		Yes 🗹	No 🗌	•					
Container/Temp Blank temperature in compliance	ce?	Yes 🔽	No 🗌	2.0 °C					
Water - VOA vials have zero headspace?		Yes 🔲	No 🗔	No VOA vials subm	nitted 🗹				
Water - pH<2 acceptable upon receipt?		Yes 🗹	No 🗌	NA 🗌 LOT#	11837				
		Adjusted?	0	Checked by	<u> </u>				
Water - ph>9 (S) or ph>10 (CN) acceptable upo	n receipt?	Yes	No 🗔	NA 🗹 LOT#					
		Adjusted?		Checked by					
Any No response must be detailed in the comm	ents section below.		<u> </u>						
Client contacted	Date contacted:		Per	son contacted					
Contacted by:	Regarding:								
Comments:									
(
Corrective Action									
Confective Action									

Page 1 of 1

CLIENT: BBA Engineering
Project: Alcoa AX LF
Lab Order: 1803163

CASE NARRATIVE

Date: 23-Mar-18

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis Method E300 - Anions Analysis

LOG IN

The samples were received and log-in performed on 3/16/2018. A total of 5 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

ANIONS ANALYSIS

For Anions Analysis, the recovery of Sulfate for the Matrix Spike (1803163-05 MS) was slightly above the method control limits. This is flagged accordingly in the QC Summary Report. This anion was within method control limits in the associated LCS/MSD. The reference sample selected for the Batch QC was from this workorder. No further corrective action was taken.

METALS ANALYSIS

For Metals Analysis, the recovery of Calcium for the Matrix Spike and Matrix Spike Duplicate (1803145-07 MS/MSD) were below the method control limits. These are flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated LCS. The reference sample selected for the Batch QC was not from this workorder. No further corrective action was taken.

Date: 23-Mar-18

CLIENT: BBA Engineering
Project: Alcoa AX LF
Lab Order: 1803163

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1803163-01	MW-IV		03/16/18 08:00 AM	3/16/2018
1803163-02	AX-25		03/16/18 10:56 AM	3/16/2018
1803163-03	AX-27		03/16/18 11:51 AM	3/16/2018
1803163-04	AX-28		03/16/18 12:21 PM	3/16/2018
1803163-05	Rinsate		03/16/18 12:30 PM	3/16/2018

Lab Order: 1803163

Client: BBA Engineering

Project: Alcoa AX LF

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1803163-01A	MW-IV	03/16/18 08:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
	MW-IV	03/16/18 08:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
1803163-01B	MW-IV	03/16/18 08:00 AM	Aqueous	E300	Anion Preparation	03/19/18 09:29 AM	84764
1803163-02A	AX-25	03/16/18 10:56 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
	AX-25	03/16/18 10:56 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
1803163-03A	AX-27	03/16/18 11:51 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
	AX-27	03/16/18 11:51 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
1803163-03B	AX-27	03/16/18 11:51 AM	Aqueous	E300	Anion Preparation	03/19/18 09:29 AM	84764
1803163-04A	AX-28	03/16/18 12:21 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
	AX-28	03/16/18 12:21 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
1803163-05A	Rinsate	03/16/18 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	03/20/18 08:42 AM	84781
1803163-05B	Rinsate	03/16/18 12:30 PM	Aqueous	E300	Anion Preparation	03/20/18 09:10 AM	84770
	Rinsate	03/16/18 12:30 PM	Aqueous	E300	Anion Preparation	03/19/18 09:29 AM	84764

Lab Order: 1803163

Client: BBA Engineering

Project: Alcoa AX LF

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1803163-01A	MW-IV	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	50	03/21/18 11:36 AM	ICP-MS4_180321B
	MW-IV	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	1	03/21/18 11:14 AM	ICP-MS4_180321B
1803163-01B	MW-IV	Aqueous	E300	Anions by IC method - Water	84764	10	03/19/18 07:52 PM	IC4_180319A
1803163-02A	AX-25	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	50	03/21/18 11:38 AM	ICP-MS4_180321B
	AX-25	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	1	03/21/18 11:15 AM	ICP-MS4_180321B
1803163-03A	AX-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	50	03/21/18 11:40 AM	ICP-MS4_180321B
	AX-27	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	1	03/21/18 11:17 AM	ICP-MS4_180321B
1803163-03B	AX-27	Aqueous	E300	Anions by IC method - Water	84764	10	03/19/18 08:09 PM	IC4_180319A
1803163-04A	AX-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	50	03/21/18 11:42 AM	ICP-MS4_180321B
	AX-28	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	1	03/21/18 11:19 AM	ICP-MS4_180321B
1803163-05A	Rinsate	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	84781	1	03/21/18 11:21 AM	ICP-MS4_180321B
1803163-05B	Rinsate	Aqueous	E300	Anions by IC method - Water	84770	1	03/20/18 11:34 AM	IC4_180320A
	Rinsate	Aqueous	E300	Anions by IC method - Water	84764	10	03/19/18 08:26 PM	IC4_180319A

CLIENT: BBA Engineering Client Sample ID: MW-IV

Project: Alcoa AX LF Lab ID: 1803163-01

Project No: 17254-18U **Collection Date:** 03/16/18 08:00 AM

Lab Order: 1803163 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER Calcium	456	SW602 (5.00	0A 15.0	mg/L	50	Analyst: SP 03/21/18 11:36 AM
ANIONS BY IC METHOD - WATER Sulfate	648	E300		mg/L	10	Analyst: JL 03/19/18 07:52 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT: BBA Engineering Client Sample ID: AX-25

Project: Alcoa AX LF Lab ID: 1803163-02

Project No: 17254-18U **Collection Date:** 03/16/18 10:56 AM

Lab Order: 1803163 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW602	0A				Analyst: SP
Calcium	302	5.00	15.0		mg/L	50	03/21/18 11:38 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: BBA Engineering Client Sample ID: AX-27

Project: Alcoa AX LF Lab ID: 1803163-03

Project No: 17254-18U **Collection Date:** 03/16/18 11:51 AM

Lab Order: 1803163 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER Calcium	453	SW602 5.00	0A 15.0	mg/L	50	Analyst: SP 03/21/18 11:40 AM
ANIONS BY IC METHOD - WATER Sulfate	659	E300		mg/L	10	Analyst: JL 03/19/18 08:09 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

CLIENT: BBA Engineering Client Sample ID: AX-28

Project: Alcoa AX LF Lab ID: 1803163-04

Project No: 17254-18U **Collection Date:** 03/16/18 12:21 PM

Lab Order: 1803163 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER		SW602	0A				Analyst: SP
Calcium	634	5.00	15.0		mg/L	50	03/21/18 11:42 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Project:

CLIENT: BBA Engineering Client Sample ID: Rinsate

Alcoa AX LF **Lab ID:** 1803163-05

Project No: 17254-18U **Collection Date:** 03/16/18 12:30 PM

Lab Order: 1803163 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
TRACE METALS: ICP-MS - WATER Calcium	0.340	SW602 0.100	2 0A 0.300	mg/L	1	Analyst: SP 03/21/18 11:21 AM
ANIONS BY IC METHOD - WATER Sulfate	<1.00	E30 0	3.00	mg/L	1	Analyst: JL 03/20/18 11:34 AM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

- DF Dilution Factor
 - J Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 23-Mar-18

ANALYTICAL QC SUMMARY REPORT

CLIENT: BBA Engineering

Work Order: 1803163
Project: Alcoa AX LF

RunID: ICP-MS4_180321B

Project: Alcoa AX	LF					Kullit	<i>)</i> . 1	CI -W154_1	100321D	,
The QC data in batch 84781 app	lies to the f	ollowing san	nples: 1803	163-01A, 18031	63-02A, 18	303163-03A,	1803163	-04A, 180316	3-05A	
Sample ID MB-84781	Batch ID:	84781		TestNo:	SW	6020A		Units:	mg/L	
SampType: MBLK	Run ID:	ICP-MS4	_180321B	Analysis	S Date: 3/21	1/2018 10:28	3:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPD	OLimit Qual
Calcium		<0.100	0.300							
Sample ID LCS-84781	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: LCS	Run ID:	ICP-MS4	_180321B	Analysis	s Date: 3/21	1/2018 10:30):00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPD	DLimit Qual
Calcium		5.17	0.300	5.00	0	103	80	120		
Sample ID LCSD-84781	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: LCSD	Run ID:	ICP-MS4	_180321B	Analysis	s Date: 3/21	1/2018 10:32	2:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPD	OLimit Qual
Calcium		5.21	0.300	5.00	0	104	80	120	0.772	15
Sample ID 1803145-07A MS	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS4	_180321B	Analysis	Date: 3/21	1/2018 11:00	0:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPI	DLimit Qual
Calcium		239	0.300	5.00	243	-74.7	80	120		S
Sample ID 1803145-07A MSD	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: MSD	Run ID:	ICP-MS4	_180321B	Analysis	s Date: 3/21	1/2018 11:02	2:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPI	DLimit Qual
Calcium		245	0.300	5.00	243	38.6	80	120	2.34	15 S
Sample ID 1803145-07A SD	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: SD	Run ID:	ICP-MS4	_180321B	Analysis	s Date: 3/21	1/2018 11:34	:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPD	DLimit Qual
Calcium		252	75.0	0	251				0.383	10
Sample ID 1803145-07A PDS	Batch ID:	84781		TestNo:	sw	6020A		Units:	mg/L	
SampType: PDS	Run ID:	ICP-MS4	_180321B	Analysis	S Date: 3/21	1/2018 11:44	:00 AM	Prep Date:	3/20/201	8
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPD	OLimit Qual
Calcium		517	15.0	250	251	106	80	120		_

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Petection Limit Page 1 of 7

R RPD outside accepted control limitsS Spike Recovery outside control limits

CLIENT: BBA Engineering

Work Order: 1803163
Project: Alcoa AX LF

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS4_180321B

Sample ID ICV-180321	Batch ID:	R97005		TestNo	SW	6020A		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 10:17	7:00 AM	Prep Date	e:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		2.66	0.300	2.50	0	106	90	110	
Sample ID LCVL-180321	Batch ID:	R97005		TestNo	SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 10:21	:00 AM	Prep Date	e:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium	ı	0.108	0.300	0.100	0	108	70	130	
Sample ID CCV1-180321	Batch ID:	R97005		TestNo	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 11:03	3:00 AM	Prep Date	e:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		5.46	0.300	5.00	0	109	90	110	
Sample ID LCVL1-180321	Batch ID:	R97005		TestNo	swe	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 11:07	7:00 AM	Prep Date	: :
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium	ı	0.113	0.300	0.100	0	113	70	130	
Sample ID CCV2-180321	Batch ID:	R97005	1	TestNo	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 11:24	1:00 AM	Prep Date	e:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		5.28	0.300	5.00	0	106	90	110	
Sample ID LCVL2-180321	Batch ID:	R97005		TestNo	: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 11:28	3:00 AM	Prep Date	e:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium	ı	0.111	0.300	0.100	0	111	70	130	
Sample ID CCV3-180321	Batch ID:	R97005		TestNo	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4	_180321B	Analysi	s Date: 3/21	/2018 11:46	6:00 AM	Prep Date	: :
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Calcium		5.29	0.300	5.00	0	106	90	110	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 2 of 7

S Spike Recovery outside control limits

CLIENT: BBA Engineering

Work Order: 1803163

ICP-MS4_180321B **RunID: Project:** Alcoa AX LF

Sample ID LCVL3-180321	Batch ID:	R97005		TestNo): S \	W6020A		Units:	mg/	L
SampType: LCVL	Run ID:	ICP-MS4	_180321B	Analys	is Date: 3/	21/2018 11:50	:00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Calcium		0.104	0.300	0.100	0	104	70	130		

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits R Spike Recovery outside control limits

Parameter not NELAC certified

Page 3 of 7

ANALYTICAL QC SUMMARY REPORT

CLIENT: BBA Engineering

Work Order: 1803163

Project: Alcoa AX LF RunID: IC4_180319A

ANALYTICAL QC SUMMARY REPORT

110,000111							-	o		
The QC data in batch 84764 ap	plies to the f	ollowing sa	amples: 1800	3163-01B, 18031	163-03B, 180	03163-05B				
Sample ID MB-84764	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: MBLK	Run ID:	IC4_180)319A	Analysis	s Date: 3/19 /	/2018 11:20):43 AM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		<1.00	3.00							
Sample ID LCS-84764	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: LCS	Run ID:	IC4_180)319A	Analysis	s Date: 3/19 /	/2018 11:37	7:43 AM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		29.8	3.00	30.00	0	99.4	90	110		
Sample ID LCSD-84764	Batch ID:	84764		TestNo	E300)		Units:	mg/L	
SampType: LCSD	Run ID:	IC4_180)319A	Analysis	s Date: 3/19	/2018 11:54	l:43 AM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		30.3	3.00	30.00	0	101	90	110	1.53 20	
Sample ID 1803153-04GMS	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_180)319A	Analysis	s Date: 3/19 /	/2018 2:39:	55 PM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		27.3	3.00	20.00	5.796	108	90	110		
Sample ID 1803153-04GMSD	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_180	0319A	Analysis	s Date: 3/19 /	/2018 2:56:	55 PM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		27.2	3.00	20.00	5.796	107	90	110	0.360 20	
Sample ID 1803153-05GMS	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: MS	Run ID:	IC4_180)319A	Analysis	s Date: 3/19 /	/2018 3:37:	45 PM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		37.7	3.00	20.00	16.46	106	90	110		
Sample ID 1803153-05GMSD	Batch ID:	84764		TestNo:	E300)		Units:	mg/L	
SampType: MSD	Run ID:	IC4_180)319A	Analysis	s Date: 3/19 /	/2018 3:54:	45 PM	Prep Date:	3/19/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD RPDLimit	Qual
Sulfate		37.8	3.00	20.00	16.46	107	90	110	0.192 20	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 7

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: BBA Engineering

Work Order: 1803163

Project: Alcoa AX LF RunID: IC4_180319A

Sample ID	CCV1-180319	Batch ID:	R96967		TestNo:	E30	0		Units:	mg/L
SampType:	CCV	Run ID:	IC4_180	319A	Analysis	Date: 3/19	/2018 7:01:	45 PM	Prep Date	:
Analyte		-	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Sulfate			30.6	3.00	30.00	0	102	90	110	
Sample ID	CCV2-180319	Batch ID:	R96967		TestNo:	E30	0		Units:	mg/L
SampType:	CCV	Run ID:	IC4_180	319A	Analysis	Date: 3/19	:45 PM	Prep Date:		
Analyte		-	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Sulfate			30.9	3.00	30.00	0	103	90	110	
Sample ID	ICV-180319	Batch ID:	R96967		TestNo:	E30	0		Units:	mg/L
SampType:	ICV	Run ID:	IC4_180	319A	Analysis	Analysis Date: 3/19/2018 10:46:43 AM Prep Date:				
Analyte		1	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Sulfate			76.8	3.00	75.00	0	102	90	110	

ANALYTICAL QC SUMMARY REPORT

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 5 of 7

R RPD outside accepted control limits

S Spike Recovery outside control limits

CLIENT: BBA Engineering

Work Order: 1803163

RunID: IC4_180320A **Project:** Alcoa AX LF

The QC data in batch 84770 app	lies to the fo	llowing samp	les: 18	03163-05B						
Sample ID MB-84770	Batch ID:	84770		TestNo:	E300			Units:	mg/L	
SampType: MBLK	Run ID:	IC4_180320	Α	Analysis	Date: 3/20/2	018 10:39	9:48 AM	Prep Date:	3/20/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	nit Qual
Sulfate		<1.00	3.00							
Sample ID LCS-84770	Batch ID:	84770		TestNo:	E300			Units:	mg/L	
SampType: LCS	Run ID:	IC4_180320	Α	Analysis	Date: 3/20/2	018 10:56	6:48 AM	Prep Date:	3/20/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	nit Qual
Sulfate		30.9	3.00	30.00	0	103	90	110		
Sample ID LCSD-84770	Batch ID:	84770		TestNo:	E300			Units:	mg/L	
SampType: LCSD	Run ID:	IC4_180320	Α	Analysis	Date: 3/20/2	018 11:13	3:48 AM	Prep Date:	3/20/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	nit Qual
Sulfate		31.2	3.00	30.00	0	104	90	110	0.930 20	
Sample ID 1803163-05BMS	Batch ID:	84770		TestNo:	E300			Units:	mg/L	
SampType: MS	Run ID:	IC4_180320	Α	Analysis	Date: 3/20/2	018 11:5	1:39 AM	Prep Date:	3/20/2018	
Analyte	1	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	nit Qual
Sulfate		22.9	3.00	20.00	0	114	90	110		S
Sample ID 1803163-05BMSD	Batch ID:	84770		TestNo:	E300			Units:	mg/L	
SampType: MSD	Run ID:	IC4_180320	A	Analysis	Date: 3/20/2	018 12:08	3:39 PM	Prep Date:	3/20/2018	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLir	nit Qual
Sulfate		21.5	3.00	20.00	0	108	90	110	6.00 20	

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAC certified

Page 6 of 7

ANALYTICAL QC SUMMARY REPORT

CLIENT: BBA Engineering

Work Order: 1803163

Project: Alcoa AX LF RunID: IC4_180320A

Sample ID ICV-180320	Batch ID:	R96985		TestNo	D: E30	0		Units:	mg/L	
SampType: ICV	Run ID:	IC4_180	320A	Analys	is Date: 3/20	/2018 10:0	5:48 AM	Prep Date	: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDL	mit Qual
Sulfate		78.8	3.00	75.00	0	105	90	110		
Sample ID CCV1-180320	Batch ID:	R96985		TestNo	D: E30	0		Units:	mg/L	
SampType: CCV	Run ID:	IC4_180	320A	Analys	is Date: 3/20	s Date: 3/20/2018 1:33:39 PM			: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDL	mit Qual
Sulfate		30.9	3.00	30.00	0	103	90	110		

ANALYTICAL QC SUMMARY REPORT

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 7

golder.com